Progress of the Retrieval Algorithms for Ocean Color Measurements in China (WP2)

Tinglu Zhang

Ocean Remote Sensing Institute Ocean University of China

Contents

Algorithms for Oceanic constituents (CHL, SPM and CDOM);
Statistic leads in

Statistical algorithm;

ANN-based algorithms;

Genetic Algorithm (Global Optimization methods)

Algorithms for IOPs ;

Statistical Algorithm;

Algorithms for K_d(490).

Statistical algorithms

Statistical Algorithms for CHL

He et al., 2000 (OUC) (Applied Optics)

Step1. Rrs→at

 $\ln[a_t(\lambda)] = a_0(\lambda) + a_1(\lambda) \ln[Rrs412/Rrs555] + a_2(\lambda) \ln[Rrs443/Rrs555] + a_3(\lambda) \ln[Rrs490/Rrs555] + a_4(\lambda) \ln[Rrs510/Rrs555] + a_5(\lambda) \ln[Rrs670/Rrs555] + a_6(\lambda) \ln[Rrs682/Rrs555]$

Step 2. $a_t \rightarrow aph$

 $a_t(\lambda) = a_{ph}(\lambda) + a_{dg}(\lambda) + a_w(\lambda)$

Step 3. aph(440) →chl

 $a_{ph}(440) = 0.06[CHL]^{0.65}$

Statistical Algorithms for CHL

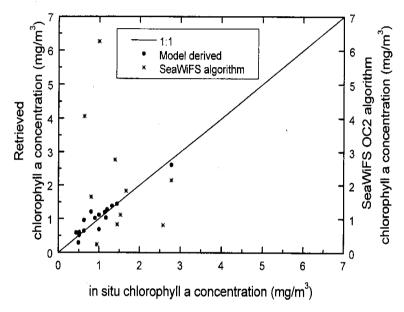


Fig. 8. Comparison of retrieved chlorophyll concentration values with *in situ* values. The solid curve represents the 1:1 ratio. The error is 18%. In comparison, the SeaWiFS OC2 algorithm retrieved chlorophyll concentration values with *in situ* values had an error of 147%.

He et al., 2000 (Applied Optics)

Summary Good performance in Case II waters; Local algorithms (the Eastern China Sea);

- More *in-situ* measurements to validate it;
- Application to satellite data to assess it.

Statistical Algorithms for CHL, SPM and CDOM

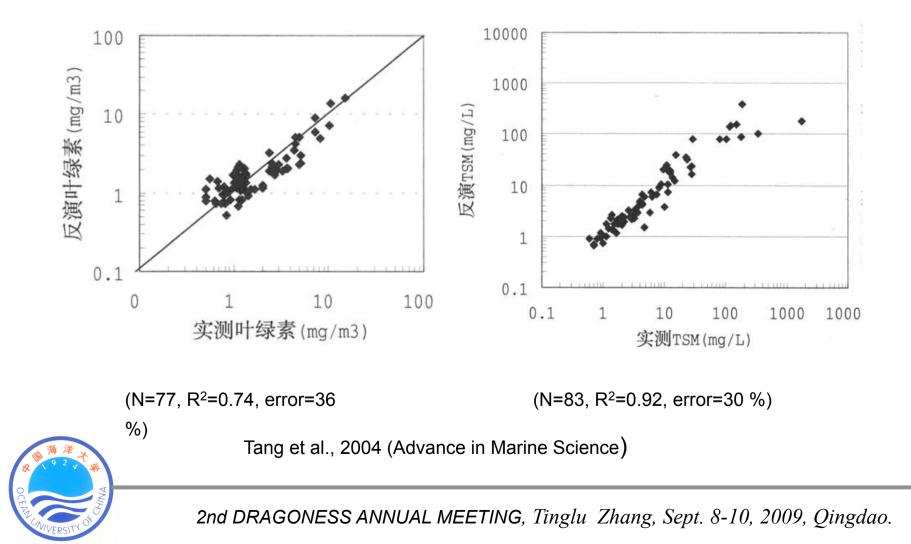
Tang et al., 2004 (National Satellite Ocean Application Service), Advance in Marine Science

Algorithm for CHL

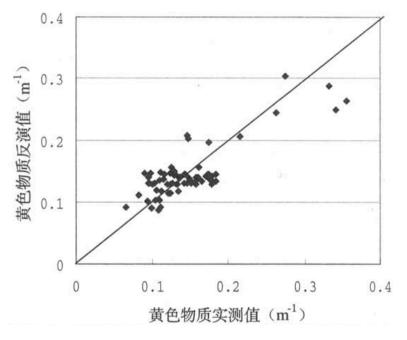
 $Log_{10}C = a_0 + a_1 \log_{10} X + a_2 (\log_{10} X)^2 \qquad X = (Rrs443 / Rrs555)(Rrs412 / Rrs510)^{-1}$

Algorithm for SPM

 $Log_{10}C = a_0 + a_1(Rrs555 + Rrs670) + a_2(Rrs490 / Rrs555)$


Algorithm for CDOM

 $Log_{10}C = a_0 + a_1 \log_{10} X + a_2 (\log_{10} X)^2 + a_3 (\log_{10} X)^3 + a_4 (\log_{10} X)^4$


 $X = (Rrs412 / Rrs510)(Rrs555 + Rrs670)^{0.23}$

Statistical Algorithms for CHL, SPM and CDOM

Statistical Algorithms for CHL, SPM and CDOM

N=83, R²=0.59, error=17%

Tang et al., 2004 (Advance in Marine Science)

2nd DRAGONESS ANNUAL MEETING, Tinglu Zhang, Sept. 8-10, 2009, Qingdao.

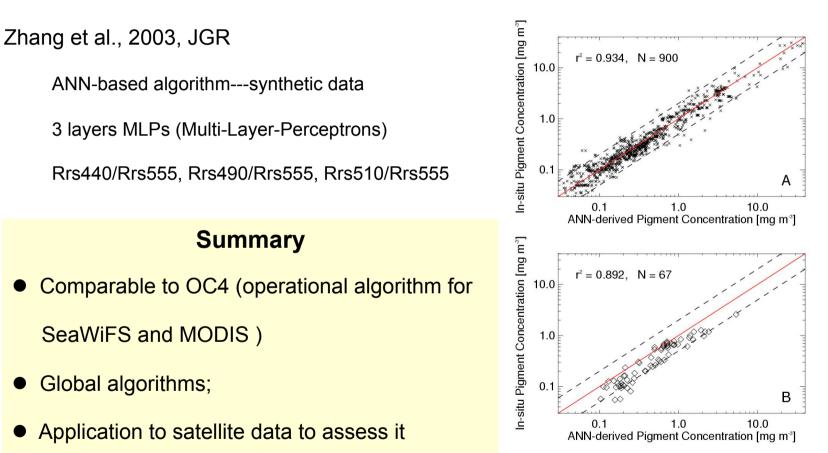
Summary

- Good performance in Yellow Sea and Bohai Sea;
- Local algorithms;
- Used for COCTS(HY-1B) and MERSI (FY-3A);
- Synchronous data to assess it

Genetic Algorithm for Oceanic Constituents

ZHAN et al., 2004 (Journal of Remote Sensing)

Gauss-Newton and Levenberg-Marquart methods used in Optimization scheme Problem: Local search, and strongly depend on initial values


Genetic algorithm --Global Optimization methods

Summary

- The advantages demonstrated by simulation and in-situ data.
- Enough *in-situ* measurements to validate;
- Application to satellite data to assess it;
- Improvement of the computing efficiency.

ANN-based Algorithm for CHL in Case I waters

ANN-based Algorithm for CHL, SPM and CDOM

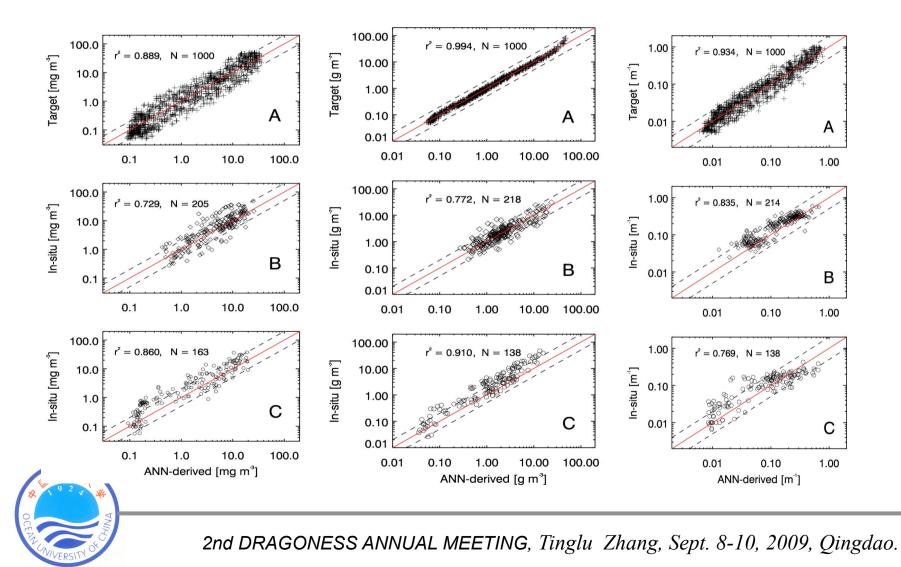
Zhang, 2003

ANN-based algorithm---synthetic data 3 layers MLPs (Multi-Layer-Perceptrons)

Algorithm for CHL

Input: R412/R443, R490/R443, R510/R443, R619/R443, R705/R443

Algorithm for SPM


Input: R559, R665, R705

Algorithm for CDOM

Input: R411, R443, R665

ANN-based Algorithm for CHL, SPM and CDOM

ANN-based Algorithm for CHL, SPM and CDOM

Summary

- Good performance in European coastal waters ;
- Local algorithms;
- More *in-situ* measurements to validate;
- Application to satellite data to assess it

Retrieval Algorithms for IOPs

Statistical Algorithm for a_t **in Case II waters**

Wang et al., 2006 (*National Satellite Ocean Application Service*), Chinese Journal of Oceanology and Limnolog

 $\log_{10}(a_t(\lambda)) = A_0 + A_1 \log_{10}(\rho_{15}) + A_2 (\log_{10}(\rho_{15}))^2 + B_1 \log_{10}(\rho_{35}) + B_2 (\log_{10}(\rho_{35}))^2$

 $\rho_{15} = Rrs412 / Rrs555, \rho_{35} = Rrs490 / Rrs555$

 a_{t} (λ) are for a_{t} 412, a_{t} 440, a_{t} 488, a_{t} 510, a_{t} 532 and a_{t} 555 respectively.

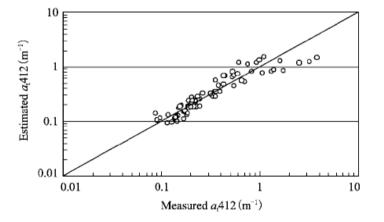
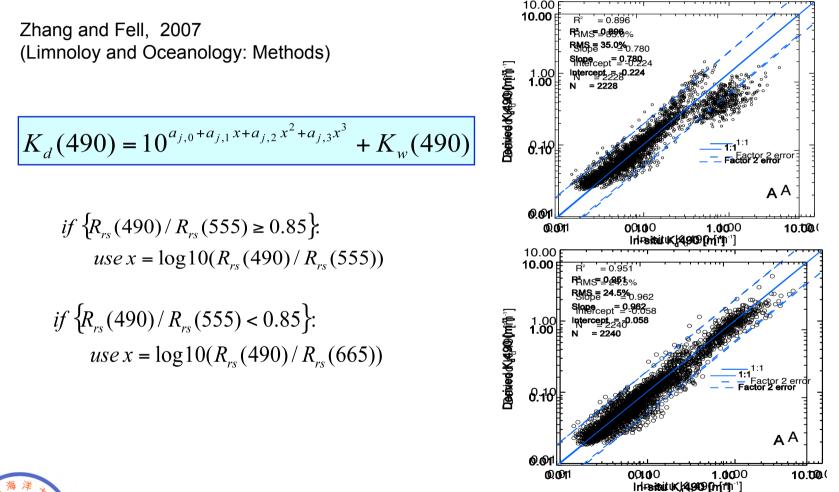


Fig.3 a_t 412 algorithm for all turbidity waters for the Yellow Sea and the East China Sea

Retrieval Algorithms for IOPs

Statistical Algorithm for a_t **in Case II waters**

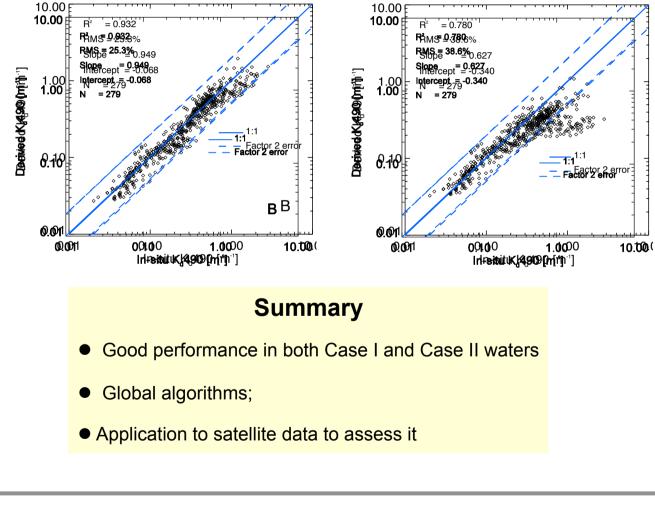
Wang et al., 2006


at	R ²	Error (Relative)
<i>a</i> t412	0.87	25.1
at440	0.85	23.7
at488	0.85	25.8
at510	0.82	24.1
at532	0.81	21.9
at555	0.75	22.0

Summary

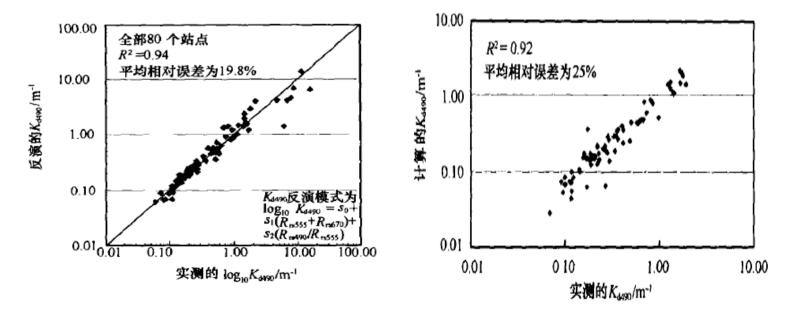
- Good performance in Yellow Sea and Bohai Sea;
- Local algorithms;
- Enough independent *in-situ* measurements to validate;
- Application to satellite data to assess it

Retrieval Algorithms for K_d(490)


Statistical Algorithm for K_d(490)

Retrieval Algorithms for K_d(490)

Statistical Algorithm for K_d(490)



Retrieval Algorithms for Kd(490)

Statistical Algorithm for Kd(490)

WANG Xiaomei, TANG Junwu, DING Jing, and et al., 2005 (ACTA OCEANOLOGICA SINICA)

 $Log_{10}K_d(490) = a_0 + a_1(Rrs555 + Rrs670) + a_2(Rrs490 / Rrs555)$

Retrieval Algorithms for K_d(490)

Statistical Algorithm for K_d(490)

WANG Xiaomei, TANG Junwu, DING Jing, and et al., 2005 (ACTA OCEANOLOGICA SINICA)

Summary

- Good performance in Yellow Sea and Bohai Sea;
- Local algorithms;
- Used for COCTS(HY-1B);
- Synchronous data to assess it.

Thank You !

谢 谢!

