
DRAGONESS

WP 2:

Review and utilization of spaceborne systems (for marine monitoring)

European future earth observing satellites for marine monitoring: Sentinel 1 and Sentinel 3

European Earth Observation Missions handled by ESA

European contributions to Global Monitoring for Environment and Security (GMES) and Sentinel satellites

Global Monitoring for Environment and Security (GMES)

European autonomy in data sources for environment and security monitoring

and

The European contribution to the Global Earth Observation System of Systems (GEOSS)

Global Monitoring for Environment and Security

A joint initiative of ESA and the European Union

"to respond to the need to establish a European Capacity for Global Monitoring of Environment and Security to support the public policy maker's need for global access to reliable, accurate and up-to-date information on issues of environment and security"

EC Communication COM(2001)264, 15 April 2001

Sentinel Missions

Sentinel 1 – SAR imaging

 All weather, day/night applications, interferometry, ocean/ice/land

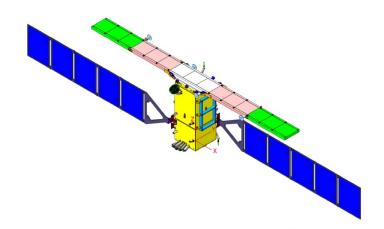
Sentinel 2 – Superspectral imaging

 Continuity of Landsat, SPOT - type of data for land mapping

Sentinel 3 – Ocean monitoring

 Wide-swath ocean color, surface temperature and land mission & radar altimeter

Sentinel 4 – Geostationary atmospheric


- Atmospheric composition monitoring, transboundary pollution
- Sentinel 5 Low-orbit atmospheric
 - Atmospheric composition monitoring

Sentinels provide continuity of ERS, ENVISAT, SPOT missions

Marine monitoring

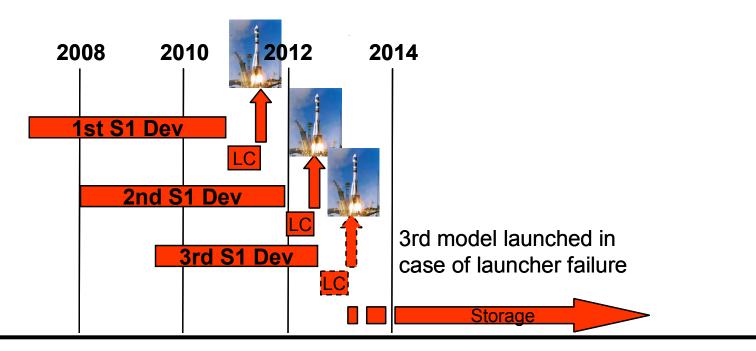
Marine monitoring

Sentinel-1

- European Radar Observatory: C-band Synthetic Aperture Radar (same frequency as Radarsat 2)
- Main operational mode: SAR imaging (Interferometric Wide Swath)
- Prime task: Continuity of operational SAR applications including interferometry

Sentinel-1 Services

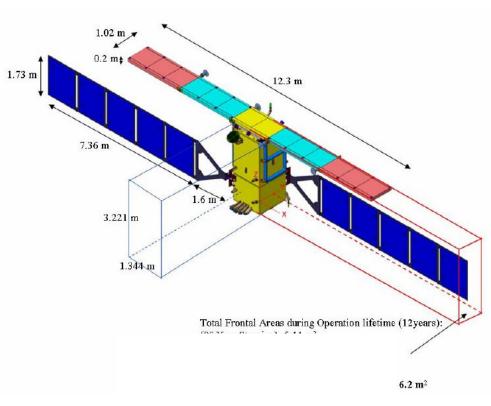
GMES Consolidated Service	Sentinel-1 Contribution		
Polar Environment Services	•Iceberg Monitoring•Near Shore Ice Complex•Glacier and Snow•Lake Ice MonitoringMonitoring•River Ice Monitoring•Sea Ice Monitoring·River Ice Monitoring		
Marine & Coastal Environment	 Sea surface winds, currents & waves Oil spill information services (surveillance, drift forecasting) Ship detection services for fisheries and securit 		
Land Information Services	 Basic Land Cover Soil Sealing Map 		
Forest Monitoring Services	 Green house gas reporting Sub-National Forest Information Updates Mapping and Monitoring of Disturbances (Clearing, Fires) Land Cover & Forest Indicators 		

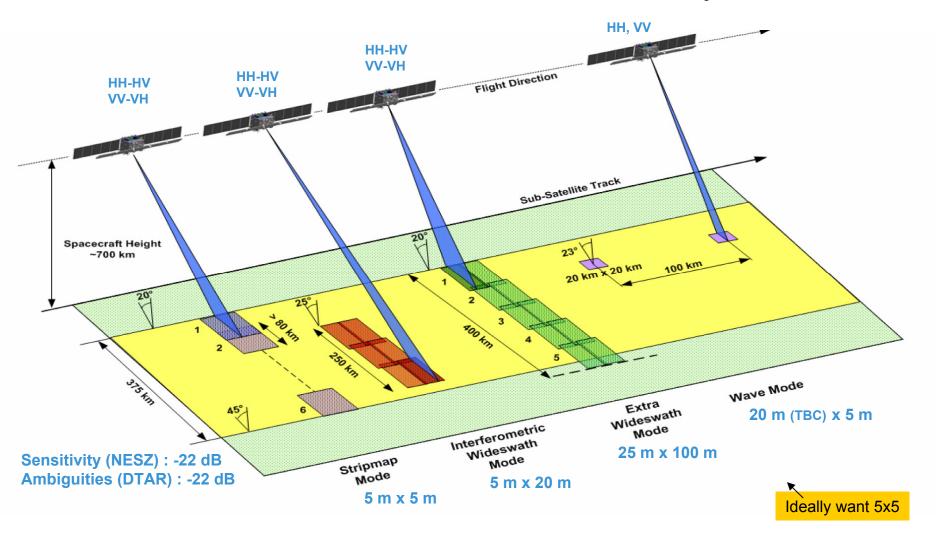

Sentinel-1 Mission requirements for marine monitoring

Provide C-band Synthetic Aperture Radar coverage and repeat observation to completely cover

- coastal zones and shipping routes on a daily basis;
- open ocean continuously by imagettes.

Sentinel-1 Programme Status

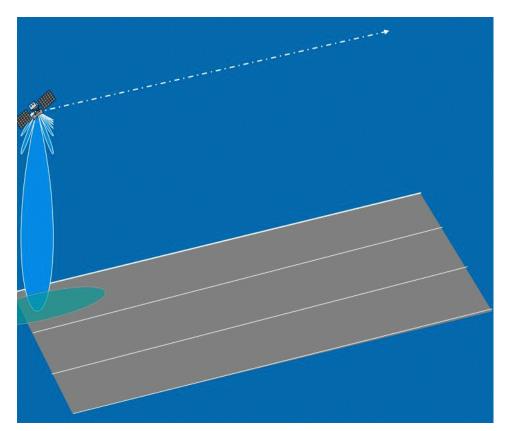

- Contract signed for development, launch and commissioning
- First satellite launch Q4 2011
- Services provided for 20 years


DRAGONESS, WP 2: Review and utilization of spaceborne systems Bergen, 17-19 Sept 2008

Sentinel-1 System

- Space Segment
 - A constellation of two satellites with a nominal lifetime in orbit of 7 years (consumables for 12), ensuring global coverage by flying on a Near-Polar Sun-Synchronous dusk-dawn Low Earth Orbit of 693 km.
 - The second satellite in the same orbit.
 - The satellites carry a
 C-band Synthetic Aperture
 Radar (SAR) payload.

Sentinel-1 Observation Geometry



Real dual polarization functionality is implemented, with dual receiver and dual polarization performance not impacting the performance of the single polarization

DRAGONESS, WP 2: Review and utilization of spaceborne systems Bergen, 17-19 Sept 2008

TOPSAR acquisition mode

TOPS replaces conventional ScanSAR for wide swath modes

- Evolution of classic ScanSAR
- Progressive scanning in azimuth direction
- Uniform illumination of the imaged area eliminates performance variation typical of ScanSAR mode
- Optimal performance along the swath

Sentinel-1 is designed to operate in TOPSAR mode to be used in:

- Interferometric WideSwath (IWS): 3 beams
- Extra WideSwath (EWS): 5 beams

Courtesy of POLIMI and TAS-I

Sentinel-1 image quality

Parameter	Strip-Map Mode (SM)	Interf. Wide- Swath Mode (IW)	Extra Wide Swath Mode (EW)	Wave Mode (WV)
Polarization (Dual not Quad)	Dual (HH-HV, VV-VH)	Dual (HH-HV, VV- VH)	Dual (HH-HV, VV- VH)	Single (HH, VV)
Access (Incidence angles)	20° - 45°	25° (min. angle)	20° (min. incidence angle)	23° (mid incidence angle)
Azimuth Resolution	< 5 m	< 20 m	< 100 m	< 5 m
Azimuth Looks	single	single	3 minimum	Single
Ground Range Resolution	< 5 m	< 5 m	< 25 m	< 20 m
Range Looks	single	single	Single	Single
Swath	> 80 km	> 250 km	> 400 km	Vignette 20 x 20 km
Minimum swath overlap	2%	2%		
Pixel localization	2.5 m (3 σ)	10 m (3σ)		
PTAR / DTAR	-25 dB / -22 dB	-25 dB / -22 dB	-25 dB / -22 dB	-25 dB / -22 dB
NESZ	-22 dB	-22 dB	-22 dB	-22 dB
Radiometric Stability	0.5 dB (3σ)	0.5 dB (3σ)	0.5 dB (3σ)	0.5 dB (3σ)
Radiometric Accuracy	1 dB (3σ)	1 dB (3σ)	1 dB (3σ)	1 dB (3σ)

S1 Payload

Orbit: 12 d (06:00 LTDN)	ASAR : 35 d (10:00 LTDN)		
Stripmap Mode (SM)			
Swath: 80 km	comparable to ASAR		
Resolution: 5x5 m (1L)	better than ASAR capability		
Extra-wide Swath Mode (EW)			
Swath: 400 km	same as ASAR		
Resolution: 25x100 m (3L)	better than ASAR capability		
Wave (WV)			
Swath: 20x20 km	better than ASAR		
Resolution: 20x5 m	better than ASAR		
Interferometric Wideswath Mode (IW)	NEW MODE (BASELINE)		
Swath: 240 km			
Resolution: cell area	comparable to ERS		
Sensitivity, Ambiguity, Radiometric performance	comparable to ASAR		
No separate AP mode but dual-pol capability in all modes without performance reduction			

No separate AP mode but dual-pol capability in all modes without performance reduction

Sentinel-3

- Consistent, long-term collection of remotely sensed marine and land data
- Operational ocean state analysis, forecasting and service provision
- Advanced Radar Altimeter concept
- Multi-channel optical imager (VIS, IR)

Key Drivers for marine monitoring

- Operational continuity of core operational ocean services based on:
 - Jason-1 (Jason-2 in the future), ERS-2 RA, GFO and Envisat RA2
 - MERIS, MODIS, SeaWIFS Ocean Colour
 - (A)ATSR, MODIS, and AVHRR Surface Temperature
- Routine, continuous operation with consistent product quality and high level of availability

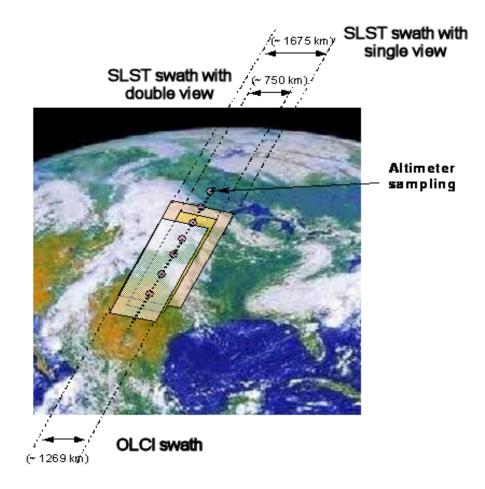
Sentinel-3 Marine Services

GMES Initial Service	S-3 Features
Marine and Coastal Environment	sea-surface topography mesoscale circulation water quality sea-surface temperature wave height and wind sediment load and transport eutrophication
Polar Environment monitoring	sea-ice thickness ice surface temperature
Marine Security	ocean-current forecasting water transparency wind and wave height
Global Change - Ocean	global sea-level rise global ocean warming ocean CO ₂ flux

Ocean Products

- Surface Topography:
 SSH, SWH, Wind, Geostrophic currents
 Sea-ice thickness
- Ocean surface colour

 Cla, PFTs, HAB, Transparency, Sediment loading, Turbidity
- Sea Surface Temperature


Cla = Chorophyll - a

PTF = Phytoplankton functional type

HAB = Harmful algal blooms

Sentinel-3 Payload Complement

- Topography Mission
 - Bi-frequency Synthetic
 Aperture Radar Altimeter
 - Microwave Radiometer (Bior Tri- frequency)
 - Precise Orbit Determination (POD) including
 - GNSS Receiver
 - Laser Retro-Reflector
- Optical Payload
 - Ocean and Land Colour Instrument (OLCI)
 - Sea and Land Surface Temperature (SLST)

Topography instruments overview

- Radar Altimeter
 - Heritage from CryoSat & Jason
 - Ku & C-band (for ionospheric corrections)
 - New features: SAR mode and open-loop tracking
 - ⇒Improved monitoring of coastal ocean, ice surfaces and inland water
- Microwave radiometer
 - 23.8 / 36.5 (/ 18.7) GHz
 - Path correction accuracy: 1.4 cm
- Precise Orbit Determination
 - High accuracy GPS (+Galileo) receiver
 - 2 cm accuracy (radial)

Ocean and Land Colour Instrument (OLCI) Overview

- Heritage from MERIS
- Pushbroom type imaging spectrometer
- 5 cameras, 16 programmable spectral bands (incl. channels for MERIS & VGT legacy products)
- Low polarisation < 1%
- Sun Glint free configuration by design
- Swath covered by SLST for atmospheric correction
- Resolution optimized for observation with full resolution over Coastal/Land
 - Land 300 m
 - Coastal Ocean 300 m
 - Open Ocean 1.2 km

Sea and Land Surface Temperature (SLST) Overview

- Heritage from AATSR, dual-view (nadir and backward) required for aerosol corrections:
 - Nadir swath >74° (1300 km min up to 1800 km)
 - Dual view swath
 49° (750 km)
 - Nadir swath covering OLCI
- 9 spectral bands:
 - Visible : 555 659 859 nm
 - SWIR : 1.38 1.61 2.25 μ m
 - TIR : 3.74 10.85 12 μ m
- One IR channel used for co-registration with OLCI

Mission Performance

- Revisit time (optical observations):
 - Full performance is met with 2 satellites. Significant improvement wrt to Envisat achieved with 1 satellite: wider instrument swath and optimised orbit.

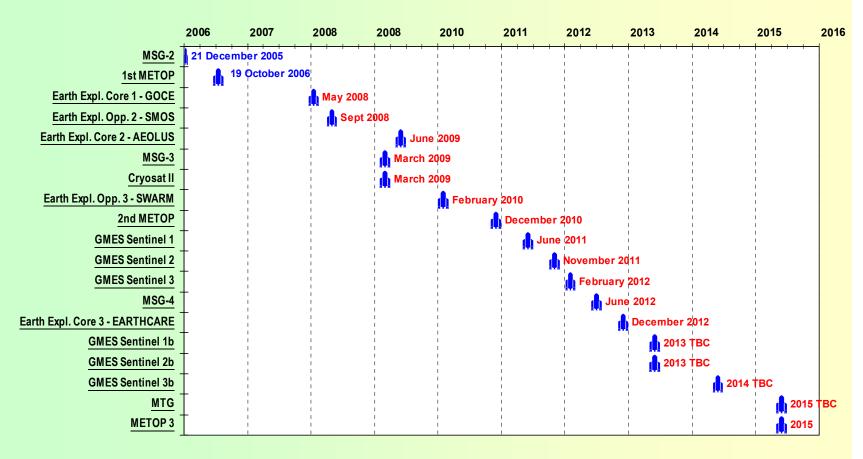
		Revisit at Equator	Revisit for latitude > 30°	Requiremen t
Ocean Colour	1 Satellite	< 3.8 days	< 2.8 days	< 2 days
(sun-glint free)	2 Satellite	< 1.9 days	< 1.4 days	
Land Colour	1 Satellite	< 2.2 days	< 1.8 days	< 2 days
(and vegetation)	2 Satellite	< 1.1 day	< 0.9 day	(goal 1 day)
SLST dual view	1 Satellite	< 1.8 days	< 1.5 days	< 4 days
	2 Satellite	< 0.9 day	< 0.8 day	

Mission Performance (cont'd)

Ocean Topography:

Error type	Value (error budget)
Altimeter random	1.3 cm
Sea model	2.0 cm
lonosphere	0.7 cm
Dry troposphere	0.7 cm
Wet troposphere	1.4 cm
Total range error (rms)	3.0 cm
POD (rms)	2.0 cm
Sea Surface Height (rms)	3.6 cm

- Products
 - Near Real Time L2 optical and topography products, available within 3 hours following acquisition.
 - Highest quality, Non-time critical L2 products, available within 1 month.


Status of Sentinels 1-3

•	Sentinel-1 – Phase B2 start: – Critical Design Review: – Launch:	2007 2009 2011
•	Sentinel-2 – Phase B2 start: – Critical Design Review: – Launch:	2007 2010 2012
•	Sentinel-3 – Phase B2 start: – Critical Design Review: – Launch:	2007 2010 2012

EOP overall launch schedule

e

D/EOP Overall Launch Schedule

More missions are in the planning, yet not included due to not yet defined launch dates: Sentinel-4, Sentinel-5 and the 7th Earth Explorer

DRAGONESS, WP 2: Review and utilization of spaceborne systems Bergen, 17-19 Sept 2008